Cart (Loading....) | Create Account
Close category search window
 

Modeling Spontaneous Emission Control in Photonic Crystals by Ferromagnetic Resonance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Hoeppe, U. ; Tech. Hochschule Mittelhessen, Friedberg, Germany ; Wolff, C. ; Benner, H. ; Busch, K.

The radiation dynamics of a magnetic dipole located inside a photonic crystal has been considered as an analogue for optical emission of a point-like emitter in such a crystal. We have experimentally realized this situation by fixing a single crystal yttrium iron garnet (YIG) sphere of 1.7 mm diameter inside a photonic crystal consisting of dielectric alumina rods. These rods form a woodpile structure of size 16 × 6 × 6 cm3 . The photonic crystal shows a band gap at microwave frequencies between 12.9 and 14.3 GHz as calculated and verified from the transmission characteristics of the crystal. The radiation feedback of the YIG sphere was probed by ferromagnetic resonance experiments covering a large frequency range from 8 to 17 GHz. Whereas outside the band gap the radiation-induced linewidth amounts up to 30 Oe, it is almost completely suppressed inside the gap. From the full analysis of linewidth and resonance shift, we could clearly prove the non-Markovian character of the radiation dynamics at the edges of the gap as expected from theory. The experimental control of spontaneous emission, as realized in our experiment, is a very promising step towards future optical applications in low threshold lasers, highly efficient light emitting diodes or photovoltaic solar modules.

Published in:

Magnetics, IEEE Transactions on  (Volume:49 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.