Cart (Loading....) | Create Account
Close category search window
 

Blind Identification of SIMO Wiener Systems Based on Kernel Canonical Correlation Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van Vaerenbergh, S. ; Dept. of Commun. Eng., Univ. of Cantabria, Santander, Spain ; Via, J. ; Santamaria, I.

We consider the problem of blind identification and equalization of single-input multiple-output (SIMO) nonlinear channels. Specifically, the nonlinear model consists of multiple single-channel Wiener systems that are excited by a common input signal. The proposed approach is based on a well-known blind identification technique for linear SIMO systems. By transforming the output signals into a reproducing kernel Hilbert space (RKHS), a linear identification problem is obtained, which we propose to solve through an iterative procedure that alternates between canonical correlation analysis (CCA) to estimate the linear parts, and kernel canonical correlation (KCCA) to estimate the memoryless nonlinearities. The proposed algorithm is able to operate on systems with as few as two output channels, on relatively small data sets and on colored signals. Simulations are included to demonstrate the effectiveness of the proposed technique.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 9 )

Date of Publication:

May1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.