By Topic

Control Strategy for Input-Series-Output-Series High-Frequency AC-Link Inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deshang Sha ; Sch. of Autom., Beijing Inst. of Technol., Beijing, China ; Guo Xu ; Xiaozhong Liao

This paper presents a control strategy for input-series-output-series (ISOS) modular inverters. Each module is a bidirectional high-frequency ac-link (HFACL) inverter composed of an HF inverter, an HF transformer followed by a cycloconverter. The relationship between input voltage sharing (IVS) and output voltage sharing (OVS) is revealed with a general load based on bidirectional ISOS inverter systems. To achieve IVS and OVS, a stable power sharing control strategy eliminating mandatory IVS loops is proposed. For individual modules, the common output voltage regulation loop output multiplies its magnitude compensator loop output to work as its pulse width modulation signal. The loop gain design is also presented. With the proposed control strategy, excellent IVS and OVS can be obtained not only during steady state but also during transients. The effectiveness of the proposed control strategy is verified by simulation and experimental results of a 2420-VA ISOS two HFACL inverters.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 11 )