Cart (Loading....) | Create Account
Close category search window
 

Decomposition strategies and their performance in FPGA-based technology mapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Selvaraj, H. ; Gippsland School of Comput. & Inf. Technol., Monash Univ., Churchill, Vic., Australia ; Nowicka, M. ; Luba, T.

Existing FPGA-oriented algorithms can be divided into two categories: minimising the number of LUTs in the solution (MIS-pga, Trade, and ASYL); and minimising the delay in the solution (DAG-Map, SWEEP, and Flow-map). Several algorithms have been implemented with both area and delay minimisation versions, for example MIS-pga and ASYL. Two collaborating groups from Warsaw University of Technology, Poland and Monash University, Australia have developed decomposition theory and procedures for single and multiple-output Boolean functions. These include a balanced decomposition algorithm which applies either parallel or serial decomposition at each phase of the synthesis process. The algorithm has been implemented in an experimental logic synthesis tool DEMAIN. Recent tests on MCNC and industrial benchmarks show that DEMAIN produces much more economical designs than major FPGA vendors software

Published in:

VLSI Design, 1998. Proceedings., 1998 Eleventh International Conference on

Date of Conference:

4-7 Jan 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.