Cart (Loading....) | Create Account
Close category search window
 

A New Method for Maximum Likelihood Parameter Estimation of Gamma-Gamma Distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kazeminia, M. ; Telecommun. Dept., Univ. of Sistan & Baluchestan, Zahedan, Iran ; Mehrjoo, M.

We propose a method to obtain the maximum likelihood (ML) parameter estimation of the Gamma-Gamma (Γ-Γ) distribution representing the free space optical (FSO) channel irradiance fluctuations. The proposed method is based on the expectation maximization (EM) algorithm and the generalized Newton method using a non-quadratic approximation. The numerical results show that, for all turbulence conditions, the proposed ML method is more accurate than the fractional moments (FMOM) method and the numerical ML method (two dimensional numerical maximization of log-likelihood function using the Nelder-Mead algorithm). Moreover, the proposed ML is a fast and stable iterative method, because the iterations always converge to the global optimum with high convergence rate.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 9 )

Date of Publication:

May1, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.