Cart (Loading....) | Create Account
Close category search window
 

Phase Noise Characterization of SGDBR Lasers Using Phase Modulation Detection Method With Delayed Self-Heterodyne Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huynh, T.N. ; Sch. of Electron. Eng., Dublin City Univ., Dublin, Ireland ; Nguyen, L. ; Barry, L.P.

This study employed the coherent phase modulation (PM) detection method to characterize the phase noise of a Sampled-Grating Distributed Bragg Reflector (SGDBR) laser via delayed self-heterodyne (DSH) measurements. We derived the formula for phase-error variance from the FM noise spectrum of the laser and performed measurements on the Distributed Feedback (DFB) and SGDBR lasers. The results confirmed that the DFB laser phase noise is well described by white FM noise while the SGDBR laser has additional frequency fluctuations below 400 MHz. The measurement and simulation results also demonstrated that the low frequency excess noise significantly broadens the linewidth of SGDBR lasers and can degrade the performance of coherent optical communication systems.

Published in:

Lightwave Technology, Journal of  (Volume:31 ,  Issue: 8 )

Date of Publication:

April15, 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.