By Topic

Intrusion detection technique by using k-means, fuzzy neural network and SVM classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandrasekhar, A.M. ; Dept. of Comput. Sci. & Eng., Sri Jayachamarajendra Coll. of Eng. (SJCE), Mysore, India ; Raghuveer, K.

With the impending era of internet, the network security has become the key foundation for lot of financial and business web applications. Intrusion detection is one of the looms to resolve the problem of network security. Imperfectness of intrusion detection systems (IDS) has given an opportunity for data mining to make several important contributions to the field of intrusion detection. In recent years, many researchers are using data mining techniques for building IDS. Here, we propose a new approach by utilizing data mining techniques such as neuro-fuzzy and radial basis support vector machine (SVM) for helping IDS to attain higher detection rate. The proposed technique has four major steps: primarily, k-means clustering is used to generate different training subsets. Then, based on the obtained training subsets, different neuro-fuzzy models are trained. Subsequently, a vector for SVM classification is formed and in the end, classification using radial SVM is performed to detect intrusion has happened or not. To illustrate the applicability and capability of the new approach, the results of experiments on KDD CUP 1999 dataset is demonstrated. Experimental results shows that our proposed new approach do better than BPNN, multiclass SVM and other well-known methods such as decision trees and Columbia model in terms of sensitivity, specificity and in particular detection accuracy.

Published in:

Computer Communication and Informatics (ICCCI), 2013 International Conference on

Date of Conference:

4-6 Jan. 2013