By Topic

Interference rejection in FFH systems using least squares estimation techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. A. Iltis ; Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA ; J. A. Ritcey ; L. B. Milstein

A fast frequency-hopped (FFH) receiver which uses a prewhitening filter to reject narrowband interference is described. By using an appropriate fractional tap spacing, it is shown that interference can be estimated independently of the desired signal. Bit error rate results are presented for the receiver for linear square-law combining. The results compare favorably to those obtained by a near-optimal automatic gain-control (AGC) combining technique. The performance of the prewhitening filter interference rejection method is shown to be superior to that of a nonparametric self-normalizing receiver. Finally, simulation results for an FFH receiver using the complex least mean-square (LMS) algorithm to update the prewhitening filter coefficients are presented

Published in:

IEEE Transactions on Communications  (Volume:38 ,  Issue: 12 )