By Topic

Model Predictive Controller for Active Demand Side Management with PV self-consumption in an intelligent building

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yi Zong ; Dept. of Electr. Eng., Tech. Univ. of Denmark, Roskilde, Denmark ; Mihet-Popa, L. ; Kullmann, D. ; Thavlov, A.
more authors

This paper presents a Model Predictive Controller (MPC) for electrical heaters' predictive power consumption including maximizing the use of local generation (e.g. solar power) in an intelligent building. The MPC is based on dynamic power price and weather forecast, considering users' comfort settings to meet an optimization objective such as minimum cost and minimum reference temperature error. It demonstrates that this MPC strategy can realize load shifting, and maximize the PV self-consumption in the residential sector. With this demand side control study, it is expected that MPC strategy for Active Demand Side Management (ADSM) can dramatically save energy and improve grid reliability, when there is a high penetration of Renewable Energy Sources (RESs) in the power system.

Published in:

Innovative Smart Grid Technologies (ISGT Europe), 2012 3rd IEEE PES International Conference and Exhibition on

Date of Conference:

14-17 Oct. 2012