By Topic

Efficient discrete optimization via simulation using stochastic kriging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jie Xu ; George Mason Univ., Fairfax, VA, USA

We propose to use a global metamodeling technique known as stochastic kriging to improve the efficiency of Discrete Optimization-via-Simulation (DOvS) algorithms. Stochastic kriging metamodel allows the DOvS algorithm to utilize all information collected during the optimization process and identify solutions that are most likely to lead to significant improvement in solution quality. We call the approach Stochastic Kriging for OPtimization Efficiency (SKOPE). In this paper, we integrate SKOPE with a locally convergent DOvS algorithm known as Adaptive Hyperbox Algorithm (AHA). Numerical experiments show that SKOPE significantly improves the performance of AHA in the early stage of optimization, which is very helpful for DOvS applications where the number of simulations for an optimization task is severely limited due to a short decision time window and time-consuming simulation.

Published in:

Simulation Conference (WSC), Proceedings of the 2012 Winter

Date of Conference:

9-12 Dec. 2012