By Topic

Combining Monte Carlo simulation with heuristics for solving the Inventory Routing Problem with stochastic demands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Caceres-Cruz, J. ; IN3-Comput. Sci. Dept., Open Univ. of Catalonia, Barcelona, Spain ; Juan, A.A. ; Bektas, T. ; Grasman, S.E.
more authors

In this paper, we introduce a simulation-based algorithm for solving the single-period Inventory Routing Problem (IRP) with stochastic demands. Our approach, which combines simulation with heuristics, considers different potential inventory policies for each customer, computes their associated inventory costs according to the expected demand in the period, and then estimates the marginal routing savings associated with each customer-policy entity. That way, for each customer it is possible to rank each inventory policy by estimating its total costs, i.e., both inventory and routing costs. Finally, a multi-start process is used to iteratively construct a set of promising solutions for the IRP. At each iteration of this multi-start process, a new set of policies is selected by performing an asymmetric randomization on the list of policy ranks. Some numerical experiments illustrate the potential of our approach.

Published in:

Simulation Conference (WSC), Proceedings of the 2012 Winter

Date of Conference:

9-12 Dec. 2012