Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

MADMatch: Many-to-Many Approximate Diagram Matching for Design Comparison

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kpodjedo, S. ; DGIGL, Ecole Polytech. of Montreal, Montreal, QC, Canada ; Ricca, F. ; Galinier, P. ; Antoniol, G.
more authors

Matching algorithms play a fundamental role in many important but difficult software engineering activities, especially design evolution analysis and model comparison. We present MADMatch, a fast and scalable many-to-many approximate diagram matching approach based on an error-tolerant graph matching (ETGM) formulation. Diagrams are represented as graphs, costs are assigned to possible differences between two given graphs, and the goal is to retrieve the cheapest matching. We address the resulting optimization problem with a tabu search enhanced by the novel use of lexical and structural information. Through several case studies with different types of diagrams and tasks, we show that our generic approach obtains better results than dedicated state-of-the-art algorithms, such as AURA, PLTSDiff, or UMLDiff, on the exact same datasets used to introduce (and evaluate) these algorithms.

Published in:

Software Engineering, IEEE Transactions on  (Volume:39 ,  Issue: 8 )