Cart (Loading....) | Create Account
Close category search window

Dynamic Multilevel Priority Packet Scheduling Scheme for Wireless Sensor Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasser, N. ; Electr. & Comput. Eng. Dept., Alfaisal Univ., Saudi Arabia ; Karim, L. ; Taleb, T.

Scheduling different types of packets, such as realtime and non-real-time data packets, at sensor nodes with resource constraints in Wireless Sensor Networks (WSN) is of vital importance to reduce sensors' energy consumptions and end-to-end data transmission delays. Most of the existing packet-scheduling mechanisms of WSN use First Come First Served (FCFS), non-preemptive priority and preemptive priority scheduling algorithms. These algorithms incur a high processing overhead and long end-to-end data transmission delay due to the FCFS concept, starvation of high priority real-time data packets due to the transmission of a large data packet in nonpreemptive priority scheduling, starvation of non-real-time data packets due to the probable continuous arrival of real-time data in preemptive priority scheduling, and improper allocation of data packets to queues in multilevel queue scheduling algorithms. Moreover, these algorithms are not dynamic to the changing requirements of WSN applications since their scheduling policies are predetermined. In this paper, we propose a Dynamic Multilevel Priority (DMP) packet scheduling scheme. In the proposed scheme, each node, except those at the last level of the virtual hierarchy in the zone-based topology of WSN, has three levels of priority queues. Real-time packets are placed into the highest-priority queue and can preempt data packets in other queues. Non-real-time packets are placed into two other queues based on a certain threshold of their estimated processing time. Leaf nodes have two queues for real-time and non-real-time data packets since they do not receive data from other nodes and thus, reduce end-to-end delay. We evaluate the performance of the proposed DMP packet scheduling scheme through simulations for real-time and non-real-time data. Simulation results illustrate that the DMP packet scheduling scheme outperforms conventional schemes in terms of average data waiting time and end-to-end delay.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:12 ,  Issue: 4 )

Date of Publication:

April 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.