Cart (Loading....) | Create Account
Close category search window
 

Feature Level Fusion of Multi-Temporal ALOS PALSAR and Landsat Data for Mapping and Monitoring of Tropical Deforestation and Forest Degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Reiche, J. ; Centre of Geo-Inf., Wageningen Univ., Wageningen, Netherlands ; Souzax, C.M. ; Hoekman, D.H. ; Verbesselt, J.
more authors

Many tropical countries suffer from persistent cloud cover inhibiting spatially consistent reporting of deforestation and forest degradation for REDD+. Data gaps remain even when compositing Landsat-like optical satellite imagery over one or two years. Instead, medium resolution SAR is capable of providing reliable deforestation information but shows limited capacity to identify forest degradation. This paper describes an innovative approach for feature fusion of multi-temporal and medium-resolution SAR and optical subpixel fraction information. After independently processing SAR and optical input data streams the extracted SAR and optical subpixel fraction features are fused using a decision tree classifier. ALOS PALSAR Fine Bean Dual and Landsat imagery of 2007 and 2010 acquired over the main mining district in central Guyana have been used for a proof-of-concept demonstration observing overall accuracies of 88% and 89.3% for mapping forest land cover and detecting deforestation and forest degradation, respectively. Deforestation and degradation rates of 0.1% and 0.08% are reported for the observation period. Data gaps due to mainly clouds and Landsat ETM+ SLC-off that remained after compositing a set of single-period Landsat scenes, but also due to SAR layover and shadow could be reduced from 7.9% to negligible 0.01% while maintaining the desired thematic detail of detecting deforestation and degradation. The paper demonstrates the increase of both spatial completeness and thematic detail when applying the methodology, compared with potential Landsat-only or PALSAR-only approaches for a heavy cloud contaminated tropical environment. It indicates the potential for providing the required accuracy of activity data for REDD+ MRV.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:6 ,  Issue: 5 )

Date of Publication:

Oct. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.