By Topic

Enabling Trustworthy Service Evaluation in Service-Oriented Mobile Social Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaohui Liang ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Xiaodong Lin ; Shen, X.S.

In this paper, we propose a Trustworthy Service Evaluation (TSE) system to enable users to share service reviews in service-oriented mobile social networks (S-MSNs). Each service provider independently maintains a TSE for itself, which collects and stores users' reviews about its services without requiring any third trusted authority. The service reviews can then be made available to interested users in making wise service selection decisions. We identify three unique service review attacks, i.e., linkability, rejection, and modification attacks, and develop sophisticated security mechanisms for the TSE to deal with these attacks. Specifically, the basic TSE (bTSE) enables users to distributedly and cooperatively submit their reviews in an integrated chain form by using hierarchical and aggregate signature techniques. It restricts the service providers to reject, modify, or delete the reviews. Thus, the integrity and authenticity of reviews are improved. Further, we extend the bTSE to a Sybil-resisted TSE (SrTSE) to enable the detection of two typical sybil attacks. In the SrTSE, if a user generates multiple reviews toward a vendor in a predefined time slot with different pseudonyms, the real identity of that user will be revealed. Through security analysis and numerical results, we show that the bTSE and the SrTSE effectively resist the service review attacks and the SrTSE additionally detects the sybil attacks in an efficient manner. Through performance evaluation, we show that the bTSE achieves better performance in terms of submission rate and delay than a service review system that does not adopt user cooperation.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:25 ,  Issue: 2 )