By Topic

Non-rigid object tracking using level sets with multiple feature spaces association

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Zhang ; Sci. & Technol. on Avionics Integration Lab., Avic Aeronaut. Radio Electron. Res. Inst., Shanghai, China ; Xin Sun ; Hongxun Yao ; Shengping Zhang

A novel approach based on a refined level sets method is presented in this paper for non-rigid object tracking. In contrast with conventional level sets methods, which are blind to target and emphasize the intensity consistency only, the proposed level set method is strengthened by making full use of the tracking context. By associating multiple feature spaces, the most discriminative target information is extracted and fused into the energy functional to drive the curve evolution. Therefore, the proposed level set method can lead an accurate convergence to the object in real-world tracking applications, as well as solving multi-mode object segmentation problem facing a typical level-set tracker. The update mechanism implemented on the target model enables tracking to continue under occlusion. Experiments confirm the robustness and reliability of our method.

Published in:

Advanced Computational Intelligence (ICACI), 2012 IEEE Fifth International Conference on

Date of Conference:

18-20 Oct. 2012