By Topic

Split-SAR ADCs: Improved Linearity With Power and Speed Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yan Zhu ; State-Key-Lab. Analog & Mixed-Signal VLSI, Univ. of Macau, Macao, China ; Chi-Hang Chan ; U-Fat Chio ; Sai-Weng Sin
more authors

This paper presents the linearity analysis of a successive approximation registers (SAR) analog-to-digital converters (ADC) with split DAC structure based on two switching methods: conventional charge-redistribution and Vcm-based switching. The static linearity performance, namely the integral nonlinearity and differential nonlinearity, as well as the parasitic effects of the split DAC, are analyzed hereunder. In addition, a code-randomized calibration technique is proposed to correct the conversion nonlinearity in the conventional SAR ADC, which is verified by behavioral simulations, as well as measured results. Performances of both switching methods are demonstrated in 90 nm CMOS. Measurement results of power, speed, and linearity clearly show the benefits of using Vcm-based switching.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )