By Topic

Using Data-Mining Approaches for Wind Turbine Power Curve Monitoring: A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schlechtingen, M. ; Dept. of Tech. Oper. Wind Offshore, EnBW Erneuerbare Energien GmbH, Hamburg, Germany ; Santos, I.F. ; Achiche, S.

Four data-mining approaches for wind turbine power curve monitoring are compared. Power curve monitoring can be applied to evaluate the turbine power output and detect deviations, causing financial loss. In this research, cluster center fuzzy logic, neural network, and k-nearest neighbor models are built and their performance compared against literature. Recently developed adaptive neuro-fuzzy-interference system models are set up and their performance compared with the other models, using the same data. Literature models often neglect the influence of the ambient temperature and the wind direction. The ambient temperature can influence the power output up to 20%. Nearby obstacles can lower the power output for certain wind directions. The approaches proposed in literature and the ANFIS models are compared by using wind speed only and two additional inputs. The comparison is based on the mean absolute error, root mean squared error, mean absolute percentage error, and standard deviation using data coming from three pitch regulated turbines rating 2 MW each. The ability to highlight performance deviations is investigated by use of real measurements. The comparison shows the decrease of error rates and of the ANFIS models when taking into account the two additional inputs and the ability to detect faults earlier.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 3 )