By Topic

A WLAN RF CMOS PA With Large-Signal MGTR Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taehwan Joo ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Bonhoon Koo ; Songcheol Hong

A CMOS linear power amplifier for wireless local area network IEEE 802.11b/g application is presented. To achieve high linear output power and high efficiency, a large-signal multigated transistor linearization method is proposed with an envelope injection gate bias circuit. A novel inter-stage matching transformer, which functions as a power splitter, is designed to implement this method. It is fabricated with a TSMC 0.13-μm standard RF CMOS process. Measurement shows 19.5-dBm Pout with 24.8% power-added efficiency (PAE) at - 25-dB error vector magnitude with an orthogonal frequency-division multiplexing 64-QAM 54-Mb/s 802.11g signal source and 23.15-dBm Pout with 31.73% PAE with DSSS, CCK, and 11-Mb/s 802.11b signal source without digital pre-distortion.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:61 ,  Issue: 3 )