Cart (Loading....) | Create Account
Close category search window
 

Layout-Driven Post-Placement Techniques for Temperature Reduction and Thermal Gradient Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Wei Liu ; Oticon, Smørum, Denmark ; Calimera, A. ; Macii, A. ; Macii, E.
more authors

With the continuing scaling of CMOS technology, on-chip temperature and thermal-induced variations have become a major design concern. To effectively limit the high temperature in a chip equipped with a cost-effective cooling system, thermal specific approaches, besides low power techniques, are necessary at the chip design level. The high temperature in hotspots and large thermal gradients are caused by the high local power density and the nonuniform power dissipation across the chip. With the objective of reducing power density in hotspots, we propose two placement techniques that spread cells in hotspots over a larger area. Increasing the area occupied by the hotspot directly reduces its power density, leading to a reduction in peak temperature and thermal gradient. To minimize the introduced overhead in delay and dynamic power, we maintain the relative positions of the coupling cells in the new layout. We compare the proposed methods in terms of temperature reduction, timing, and area overhead to the baseline method, which enlarges the circuit area uniformly. The experimental results showed that our methods achieve a larger reduction in both peak temperature and thermal gradient than the baseline method. The baseline method, although reducing peak temperature in most cases, has little impact on thermal gradient.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 3 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.