Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

A Resonant Gate-Drive Circuit With Optically Isolated Control Signal and Power Supply for Fast-Switching and High-Voltage Power Semiconductor Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fujita, H. ; Tokyo Inst. of Technol., Tokyo, Japan

This paper deals with a resonant gate-drive circuit for fast-switching and high-voltage power semiconductor devices, which is equipped with optical fibers for both gate control signal and dc power supply. A resonant inductor connected with the gate terminal makes it possible to charge or discharge the gate-to-source voltage by using the parallel resonance between the inductor and the input capacitance of the device. The optical fibers can be used to deliver the driving power to the gate-drive circuit, because the circuit theoretically causes no power consumption for driving the power device. Moreover, the proposed circuit makes it possible to suppress fluctuations in the gate voltage caused by a rapid change in the drain-to-source voltage. Experimental results are shown to verify the viability of the proposed circuit.

Published in:

Power Electronics, IEEE Transactions on  (Volume:28 ,  Issue: 11 )