By Topic

Human Hand Motion Analysis With Multisensory Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhaojie Ju ; Intell. Syst. & Biomed. Robot. Group, Univ. of Portsmouth, Portsmouth, UK ; Honghai Liu

In order to study and analyze human hand motions that contain multimodal information, a generalized framework integrating multiple sensors is proposed and consists of modules of sensor integration, signal preprocessing, correlation study of sensory information, and motion identification. Three types of sensors are integrated to simultaneously capture the finger angle trajectories, the hand contact forces, and the forearm electromyography (EMG) signals. To facilitate the rapid acquisition of human hand tasks, methods to automatically synchronize and segment manipulation primitives are developed in the signal preprocessing module. Correlations of the sensory information are studied by using Empirical Copula and demonstrate that there exist significant relationships between muscle signals and finger trajectories and between muscle signals and contact forces. In addition, recognizing different hand grasps and manipulations based on the EMG signals is investigated by using Fuzzy Gaussian Mixture Models (FGMMs) and results of comparative experiments show FGMMs outperform Gaussian Mixture Models and support vector machine with a higher recognition rate. The proposed framework integrating the state-of-the-art sensor technology with the developed algorithms provides researchers a versatile and adaptable platform for human hand motion analysis and has potential applications especially in robotic hand or prosthetic hand control and human-computer interaction.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:19 ,  Issue: 2 )