Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

On the Role of Mobility for Multimessage Gossip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yuxin Chen ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Shakkottai, S. ; Andrews, J.G.

We consider information dissemination in a large n -user wireless network in which k users wish to share a unique message with all other users. Each of the n users only has knowledge of its own contents and state information; this corresponds to a one-sided push-only scenario. The goal is to disseminate all messages efficiently, hopefully achieving an order-optimal spreading rate over unicast wireless random networks. First, we show that a random-push strategy-where a user sends its own or a received packet at random-is order-wise suboptimal in a random geometric graph: specifically, Ω(√n) times slower than optimal spreading. It is known that this gap can be closed if each user has “full” mobility, since this effectively creates a complete graph. We instead consider velocity-constrained mobility where at each time slot the user moves locally using a discrete random walk with velocity v(n) that is much lower than full mobility. We propose a simple two-stage dissemination strategy that alternates between individual message flooding (“self promotion”) and random gossiping. We prove that this scheme achieves a close to optimal spreading rate (within only a logarithmic gap) as long as the velocity is at least v(n)=ω(√(logn/k)). The key insight is that the mixing property introduced by the partial mobility helps users to spread in space within a relatively short period compared to the optimal spreading time, which macroscopically mimics message dissemination over a complete graph.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 6 )