By Topic

Decentralized Enactment of BPEL Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pantazoglou, M. ; Dept. of Inf. & Telecommun., Nat. & Kapodistrian Univ. of Athens, Athens, Greece ; Pogkas, I. ; Tsalgatidou, A.

This article presents BPELcube, a framework comprising a scalable architecture and a set of distributed algorithms, which support the decentralized enactment of BPEL processes. In many application domains, BPEL processes are long-running, involve the exchange of voluminous data with external Web services, and are concurrently accessed by large numbers of users. In such context, centralized BPEL process execution engines pose considerable limitations in terms of scalability and performance. To overcome such problems, a scalable hypercube peer-to-peer topology is employed by BPELcube in order to organize an arbitrary number of nodes, which can then collaborate in the decentralized execution and monitoring of BPEL processes. Contrary to traditional clustering approaches, each node does not fully take charge of executing the whole process; rather, it contributes to the overall process execution by running a subset of the process activities and maintaining a subset of the process variables. Hence, the hypercube-based infrastructure acts as a single execution engine, where workload is evenly distributed among the participating nodes in a fine-grained manner. An experimental evaluation of BPELcube and a comparison with centralized and clustered BPEL engine architectures demonstrate that the decentralized approach yields improved process execution times and throughput.

Published in:

Services Computing, IEEE Transactions on  (Volume:7 ,  Issue: 2 )