By Topic

Privacy-preserving nearest neighbor methods: comparing signals without revealing them

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rane, S. ; Mitsubishi Electr. Res. Labs., Cambridge, MA, USA ; Boufounos, P.T.

Comparing two signals is one of the most essential and prevalent tasks in signal processing. A large number of applications fundamentally rely on determining the answers to the following two questions: 1) How should two signals be compared? 2) Given a set of signals and a query signal, which signals are the nearest neighbors (NNs) of the query signal, i.e., which signals in the database are most similar to the query signal? The NN search problem is defined as follows: Given a set S containing points in a metric space M, and a query point x !M, find the point in S that is closest to x. The problem can be extended to K-NN, i.e., determining the K signals nearest to x. In this context, the points in question are signals, such as images, videos, or other waveforms. The qualifier closest refers to a distance metric, such as the Euclidean distance or Manhattan distance between pairs of points in S. Finding the NN of the query point should be at most linear in the database size and is a well-studied problem in conventional NN settings.

Published in:

Signal Processing Magazine, IEEE  (Volume:30 ,  Issue: 2 )