By Topic

Predicting School Failure and Dropout by Using Data Mining Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Marquez-Vera, C. ; Autonomous Univ. of Zacatecas, Zacatecas, Mexico ; Morales, C.R. ; Soto, S.V.

This paper proposes to apply data mining techniques to predict school failure and dropout. We use real data on 670 middle-school students from Zacatecas, México, and employ white-box classification methods, such as induction rules and decision trees. Experiments attempt to improve their accuracy for predicting which students might fail or dropout by first, using all the available attributes; next, selecting the best attributes; and finally, rebalancing data and using cost sensitive classification. The outcomes have been compared and the models with the best results are shown.

Published in:

Tecnologias del Aprendizaje, IEEE Revista Iberoamericana de  (Volume:8 ,  Issue: 1 )