By Topic

Rate of Information Transmission in Human Manual Control of an Unstable System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lupu, M.F. ; Dept. of Electr. & Comput. Eng., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Mingui Sun ; Ruiping Xia ; Zhi-Hong Mao

The complexity of human-machine interaction (HMI) is rapidly growing in modern industrial, medical, and military systems. Human operators are often challenged by control of high-order systems or unstable systems near the limits of controllability. However, there is no quantitative indication of human performance and cognitive workload in these difficult HMI tasks. Here, we characterize HMI as information flows measured in bits per second (b/s). We propose a control-theoretic framework to estimate the rate of information transmission in manual control. We demonstrate our method in an example of stabilizing an inverted pendulum, where we derive that, for a normal human operator, the information-transmission rate of manual control with one degree of freedom ranges between 3 and 4 b/s. This quantitative indication reveals the potential and limitation of human manual control and is instructive to the design of HMI interfaces that may maximally utilize human control commands.

Published in:

Human-Machine Systems, IEEE Transactions on  (Volume:43 ,  Issue: 2 )