By Topic

Abrasion Modeling of Multiple-Point Defect Dynamics for Machine Condition Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yaqub, M.F. ; Caulneld Sch. of Inf. Technol., Monash Univ., Clayton, VIC, Australia ; Gondal, I. ; Kamruzzaman, J. ; Loparo, K.A.

Multiple-point defects and abraded surfaces in rotary machinery induce complex vibration signatures, and have a tendency to mislead defect diagnosis models. A challenging problem in machine defect diagnosis is to model and study defect signature dynamics in the case of multiple-point defects and surface abrasion. In this study, a multiple-point defect model (MPDM) that characterizes the dynamics of n-point bearing defects is proposed. MPDM is further extended to model degradation in a rotating machine as a special case of multiple-point defects. Analytical and experimental results for multiple-point defects and abrasions show that the location of the fundamental defect frequency shifts depending upon the relative location of the defects and width of the abrasive region. This variation in the defect frequency results in a degradation of the defect detection accuracy of the defect diagnostic model. Based on envelope detection analysis, a modification in existing defect diagnostic models is recommended to nullify the impact of multiple-point defects, and general abrasion in machine components.

Published in:

Reliability, IEEE Transactions on  (Volume:62 ,  Issue: 1 )