Cart (Loading....) | Create Account
Close category search window
 

Directional Local Filtering for Stand Density Estimation in Closed Forest Canopies Using VHR Optical and LiDAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Van Coillie, F.M.B. ; Lab. of Forest Manage. & Spatial Inf. Tech. (FORSIT), Ghent Univ., Ghent, Belgium ; Devriendt, F.R. ; Verbeke, L.P.C. ; De Wulf, R.R.

In this letter, we present a novel object-based approach addressing individual tree crown (ITC) detection to assess stand density from remotely sensed imagery in closed forest canopies: directional local filtering (DLF). DLF is a variant of local maximum filtering (LMF). Within locally homogeneous areas, it uses a 1-D neighborhood and simultaneously searches for local directional maxima and minima. From the extracted local maxima and minima, a proxy for crown dimensions is inferred, which is in turn related to stand density. Developed on artificial imagery, the new object-based ITC method was tested on three different forest types in Belgium, which were all characterized by dense closed canopies: 1) a coniferous forest; 2) a mixed forest; and 3) a deciduous forest. Very high resolution aerial photographs, IKONOS imagery, and Light Detection and Ranging data, in conjunction with manually digitized and field survey data, were used to evaluate the new technique. The directional DLF approach yielded consistently stronger relations (in terms of R2) when compared with the conventional omnidirectional LMF technique. The qualitative evaluation clearly demonstrated that, next to stand density estimation, DLF also offered opportunities for full crown delineation.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 4 )

Date of Publication:

July 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.