By Topic

Distributed Pareto Optimization via Diffusion Strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jianshu Chen ; Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA ; Sayed, A.H.

We consider solving multi-objective optimization problems in a distributed manner by a network of cooperating and learning agents. The problem is equivalent to optimizing a global cost that is the sum of individual components. The optimizers of the individual components do not necessarily coincide and the network therefore needs to seek Pareto optimal solutions. We develop a distributed solution that relies on a general class of adaptive diffusion strategies. We show how the diffusion process can be represented as the cascade composition of three operators: two combination operators and a gradient descent operator. Using the Banach fixed-point theorem, we establish the existence of a unique fixed point for the composite cascade. We then study how close each agent converges towards this fixed point, and also examine how close the Pareto solution is to the fixed point. We perform a detailed mean-square error analysis and establish that all agents are able to converge to the same Pareto optimal solution within a sufficiently small mean-square-error (MSE) bound even for constant step-sizes. We illustrate one application of the theory to collaborative decision making in finance by a network of agents.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:7 ,  Issue: 2 )