Cart (Loading....) | Create Account
Close category search window

Text detection in natural scenes using Gradient Vector Flow-Guided symmetry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Trung Quy Phan ; Sch. of Comput., Nat. Univ. of Singapore, Singapore, Singapore ; Shivakumara, P. ; Chew Lim Tan

In this paper, we propose a novel method for text detection in natural scenes. Gradient Vector Flow is first used to extract both intra-character and inter-character symmetries. In the second step, we group horizontally aligned symmetry components into text lines based on several constraints on sizes, positions and colors. Finally, to remove false positives, we employ a learning-based approach which makes use of Histogram of Oriented Gradients feature. The main advantage of the proposed method lies in the use of both the text features and the gap (i.e., inter-character) features. Existing techniques typically extract only the former and ignore the latter. Experiments on the benchmark ICDAR 2003 dataset show the good detection performance of our method on natural scene text.

Published in:

Pattern Recognition (ICPR), 2012 21st International Conference on

Date of Conference:

11-15 Nov. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.