By Topic

Multi-view multi-class object detection via exemplar compounding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kai Ma ; Univ. of Illinois at Chicago, Chicago, IL, USA ; Ben-Arie, J.

To address the multi-view multi-class object detection problem, we propose a method named Vector Array Recognition by Indexing and Sequencing (VARIS). VARIS is able to find optimal similarity matching between the input image and pre-stored exemplars while allowing wide geometrical variations which are limited only by topology constraints. Aggregated similarity is further enhanced by matching the input image with compound exemplars. The exemplar compounding procedure also reduces the number of exemplars necessary for each class. Our experiments show that VARIS with exemplar compounding achieves state-of-the-art performance on PASCAL VOC2007 dataset with a reasonable computational cost.

Published in:

Pattern Recognition (ICPR), 2012 21st International Conference on

Date of Conference:

11-15 Nov. 2012