By Topic

Strategies for multiple feature fusion with Hierarchical HMM: Application to activity recognition from wearable audiovisual sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
8 Author(s)
Pinquier, J. ; IRIT, Univ. of Toulouse, Toulouse, France ; Karaman, S. ; Letoupin, L. ; Guyot, P.
more authors

In this paper, we further develop the research on recognition of activities, in videos recorded with wearable cameras, with Hierarchical Hidden Markov Model classifiers. The visual scenes being of a strong complexity in terms of motion and visual content, good performances have been obtained using multiple visual and audio cues. The adequate fusion of features from physically different description spaces remains an open issue not only for this particular task, but in multiple problems of pattern recognition. A study of optimal fusion strategies in the HMM framework is proposed. We design and exploit early, intermediate and late fusions with emitting states in the H-HMM. The results obtained on a corpus recorded by healthy volunteers and patients in a longitudinal dementia study allow choosing optimal fusion strategies as a function of target activity.

Published in:

Pattern Recognition (ICPR), 2012 21st International Conference on

Date of Conference:

11-15 Nov. 2012