Cart (Loading....) | Create Account
Close category search window

Evaluation of local detectors and descriptors for fast feature matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Miksik, O. ; CMP, Prague, Czech Republic ; Mikolajczyk, K.

Local feature detectors and descriptors are widely used in many computer vision applications and various methods have been proposed during the past decade. There have been a number of evaluations focused on various aspects of local features, matching accuracy in particular, however there has been no comparisons considering the accuracy and speed trade-offs of recent extractors such as BRIEF, BRISK, ORB, MRRID, MROGH and LIOP. This paper provides a performance evaluation of recent feature detectors and compares their matching precision and speed in randomized kd-trees setup as well as an evaluation of binary descriptors with efficient computation of Hamming distance.

Published in:

Pattern Recognition (ICPR), 2012 21st International Conference on

Date of Conference:

11-15 Nov. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.