Cart (Loading....) | Create Account
Close category search window
 

Perceptually weighted Non-negative Matrix Factorization for blind single-channel music source separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Kirbiz, S. ; Dept. of Electron. & Commun. Eng., Istanbul Tech. Univ., Istanbul, Turkey ; Gunsel, B.

We propose a blind single-channel musical source separation method that improves perceptual quality of the separated sources. It uses the advantages of subspace learning based on Non-negative Matrix Factor 2-D Deconvolution (NMF2D). To improve the perceptual quality of separation, we propose a weighted divergence type cost function for the optimization that adopts the auditory model defined in ITU-R BS.1387 into the source separation. It is shown that the proposed perceptually weighted NMF2D scheme efficiently clusters the bases of subspace representation corresponding to notes generated by single instruments. Source separation performance has been reported on musical mixtures resulting an improvement in perceptual quality measures.

Published in:

Pattern Recognition (ICPR), 2012 21st International Conference on

Date of Conference:

11-15 Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.