Cart (Loading....) | Create Account
Close category search window

Intrinsic degradation mechanism of nearly lattice-matched InAlN layers grown on GaN substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Perillat-Merceroz, Guillaume ; Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland ; Cosendey, Gatien ; Carlin, Jean-Francois ; Butte, Raphael
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Thanks to its high refractive index contrast, band gap, and polarization mismatch compared to GaN, In0.17Al0.83N layers lattice-matched to GaN are an attractive solution for applications such as distributed Bragg reflectors, ultraviolet light-emitting diodes, or high electron mobility transistors. In order to study the structural degradation mechanism of InAlN layers with increasing thickness, we performed metalorganic vapor phase epitaxy of InAlN layers of thicknesses ranging from 2 to 500 nm, on free-standing (0001) GaN substrates with a low density of threading dislocations, for In compositions of 13.5% (layers under tensile strain), and 19.7% (layers under compressive strain). In both cases, a surface morphology with hillocks is initially observed, followed by the appearance of V-defects. We propose that those hillocks arise due to kinetic roughening, and that V-defects subsequently appear beyond a critical hillock size. It is seen that the critical thickness for the appearance of V-defects increases together with the surface diffusion length either by increasing the temperature or the In flux because of a surfactant effect. In thick InAlN layers, a better (worse) In incorporation occurring on the concave (convex) shape surfaces of the V-defects is observed leading to a top phase-separated InAlN layer lying on the initial homogeneous InAlN layer after V-defects coalescence. It is suggested that similar mechanisms could be responsible for the degradation of thick InGaN layers.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 6 )

Date of Publication:

Feb 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.