Cart (Loading....) | Create Account
Close category search window
 

Dielectric function of Cu(In, Ga)Se2-based polycrystalline materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Minoura, Shota ; Center of Innovative Photovoltaic Systems (CIPS), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan ; Kodera, Keita ; Maekawa, Takuji ; Miyazaki, Kenichi
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4790174 

The dielectric functions of Cu(In, Ga)Se2(CIGS)-based polycrystalline layers with different Ga and Cu compositions have been determined by applying spectroscopic ellipsometry (SE) in a wide energy range of 0.7–6.5 eV. To suppress SE analysis errors induced by rough surface and compositional fluctuation, quite thin CIGS layers (<60 nm) with high uniformity toward the growth direction have been characterized using a self-consistent SE analysis method. We find that the optical model used in many previous studies is oversimplified particularly for the roughness/overlayer contribution, and all the artifacts arising from the simplified analysis have been removed almost completely in our approach. The CIGS dielectric functions with the variation of the Ga composition [x = Ga/(In + Ga)] revealed that (i) the whole CIGS dielectric function shifts toward higher energies with x, (ii) the band gap increases linearly with x without the band-gap bowing effect, and (iii) the overall absorption coefficients are significantly smaller than those reported earlier. Furthermore, the reduction of the Cu composition [y = Cu/(In + Ga)] leads to (i) the linear increase in the band-edge transition energy and (ii) the decrease in the absorption coefficient, due to the smaller interaction of the Cu 3d orbitals near the valence band maximum in the Cu-deficient layers. When y > 1, on the other hand, the free-carrier absorption increases drastically due to the formation of a semi-metallic CuxSe phase with a constant band gap in the CIGS component. In this study, by using a standard critical-point line-shape analysis, the critical point energies of the CIGS-based layers with different Ga and Cu compositions have been determined. Based on these results, we will discuss the optical transitions in CIGS-based polycrystalline materials.

Published in:

Journal of Applied Physics  (Volume:113 ,  Issue: 6 )

Date of Publication:

Feb 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.