By Topic

Transmission of OFDM-UWB radio signals in IM-DD optical fiber communication systems employing optimized dual parallel mach-zehnder modulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tiago M. F. Alves ; Group of Research on Optical Fibre Telecommunication Systems (GROFTS) of Instituto de Telecomunicacoes, Department of Electrical and Computer Engineering, Instituto Superior Tecnico, Technical University of Lisbon ; Adolfo V. T. Cartaxo

A dual parallel Mach-Zehnder modulator (DPMZM) used for electro-optic conversion of multi-band orthogonal frequency-division multiplexing (OFDM) ultra-wideband (UWB) radio signals in intensity modulated direct detection optical communication systems is optimized theoretically and through numerical simulation. The optimum DPMZM parameters that allow simultaneous mitigation of the second and third order distortion components created by the joint electro-optic converter and photodiode nonlinearities are identified. The corresponding minimum optical signal-to-noise ratio (OSNR) required to achieve a bit error ratio of 10-9 is also evaluated. An analytical expression showing the relation between the optimum DPMZM parameters under extended voltage levels of the OFDM-UWB signals applied to the DPMZM is proposed and validated. It is shown that the DPMZM performance presents high robustness to deviations from the optimum DPMZM parameters identified. Additionally, it is shown that similar minimum required OSNR levels are obtained with the optimized DPMZM and when the electro-optic conversion is realized by a single MZM.

Published in:

IEEE/OSA Journal of Optical Communications and Networking  (Volume:5 ,  Issue: 2 )