By Topic

Soft Margin Multiple Kernel Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xinxing Xu ; School of Computer Engineering, Nanyang Technological University, Singapore ; Ivor W. Tsang ; Dong Xu

Multiple kernel learning (MKL) has been proposed for kernel methods by learning the optimal kernel from a set of predefined base kernels. However, the traditional L1MKL method often achieves worse results than the simplest method using the average of base kernels (i.e., average kernel) in some practical applications. In order to improve the effectiveness of MKL, this paper presents a novel soft margin perspective for MKL. Specifically, we introduce an additional slack variable called kernel slack variable to each quadratic constraint of MKL, which corresponds to one support vector machine model using a single base kernel. We first show that L1MKL can be deemed as hard margin MKL, and then we propose a novel soft margin framework for MKL. Three commonly used loss functions, including the hinge loss, the square hinge loss, and the square loss, can be readily incorporated into this framework, leading to the new soft margin MKL objective functions. Many existing MKL methods can be shown as special cases under our soft margin framework. For example, the hinge loss soft margin MKL leads to a new box constraint for kernel combination coefficients. Using different hyper-parameter values for this formulation, we can inherently bridge the method using average kernel, L1MKL, and the hinge loss soft margin MKL. The square hinge loss soft margin MKL unifies the family of elastic net constraint/regularizer based approaches; and the square loss soft margin MKL incorporates L2MKL naturally. Moreover, we also develop efficient algorithms for solving both the hinge loss and square hinge loss soft margin MKL. Comprehensive experimental studies for various MKL algorithms on several benchmark data sets and two real world applications, including video action recognition and event recognition demonstrate that our proposed algorithms can efficiently achieve an effective yet sparse solution for MKL.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:24 ,  Issue: 5 )