Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

Airborne Vehicle Detection in Dense Urban Areas Using HoG Features and Disparity Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sebastian Tuermer ; Photogrammetry & Image Anal. Dept., German Aerosp. Center (DLR), Oberpfaffenhofen, Germany ; Franz Kurz ; Peter Reinartz ; Uwe Stilla

Vehicle detection has been an important research field for years as there are a lot of valuable applications, ranging from support of traffic planners to real-time traffic management. Especially detection of cars in dense urban areas is of interest due to the high traffic volume and the limited space. In city areas many car-like objects (e.g., dormers) appear which might lead to confusion. Additionally, the inaccuracy of road databases supporting the extraction process has to be handled in a proper way. This paper describes an integrated real-time processing chain which utilizes multiple occurrence of objects in images. At least two subsequent images, data of exterior orientation, a global DEM, and a road database are used as input data. The segments of the road database are projected in the non-geocoded image using the corresponding height information from the global DEM. From amply masked road areas in both images a disparity map is calculated. This map is used to exclude elevated objects above a certain height (e.g., buildings and vegetation). Additionally, homogeneous areas are excluded by a fast region growing algorithm. Remaining parts of one input image are classified based on the `Histogram of oriented Gradients (HoG)' features. The implemented approach has been verified using image sections from two different flights and manually extracted ground truth data from the inner city of Munich. The evaluation shows a quality of up to 70 percent.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:6 ,  Issue: 6 )