Cart (Loading....) | Create Account
Close category search window
 

A novel graphene-based inkjet-printed WISP-enabled wireless gas sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Le, T. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Lakafosis, V. ; Kim, S. ; Cook, B.
more authors

In this paper we demonstrate the design and development of a low-cost, self-powered, wireless sensor solution based on the WISP platform and utilizing thin films produced from environmentally friendly, water-based, inkjet printed graphene oxide (GO) ink. The sensor demonstrates good response to ammonia gas (NH3), yielding a 6% normalized resistance change within 15 minutes after exposure to a concentration of 500 ppm. In addition, excellent recovery time is achieved using the graphene thin films, with over 30% of material recovery observed within 5 minutes without exposure to high temperature or any UV treatments. In addition to reporting the first ever integration of inkjet-printed water soluble GO inks into low cost RF electronics fabricated on flexible substrates, we also bring gas sensing capabilities to RFID tags relying on purely wireless digital transmission of the sensed information. The introduction of mass producible, stable, environmentally friendly, inkjet printable GO on organic paper/Kapton substrates lays the foundation for the development of a wide range of new low-cost, high performance graphene-based devices, such as inkjet-printed diodes, capacitors and transistors.

Published in:

Microwave Conference (EuMC), 2012 42nd European

Date of Conference:

Oct. 29 2012-Nov. 1 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.