By Topic

Application-Independent Testing of 3-D Field Programmable Gate Array Interconnect Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yen-Lin Peng ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Ding-Ming Kwai ; Yung-Fa Chou ; Cheng-Wen Wu

3-D integration has been touted as an approach to reducing the lengths of critical paths in field-programmable gate arrays (FPGAs). A 3-D chip stacks a number of 2-D FPGA bare dies, interconnected by through-silicon vias (TSVs) and micro bumps, to attain a high packing density. However, the technology also introduces new types of defects, such as TSV void and microbump misalignment. Testing the interconnection faults becomes inevitable. In this paper, we present an automatic test pattern generator for open, short, and delay faults on 3-D FPGA interconnects by exploiting the regularity of switch matrix topology and forming repetitive paths with finite steps and with loop-back. The experimental results show that 12 test patterns (TPs) suffice to achieve 100% open fault coverage (FC). To detect all possible neighboring short faults, we need more than 40 TPs, whose number increases only slightly with the height of the 3-D FPGA. The TPs have high delay FC (96%) for 3-D FPGAs with the number of configurable logic blocks ranging from 50 × 50 × 2 to 50 × 50 × 6, demonstrating the scalability of our method.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:22 ,  Issue: 2 )