Cart (Loading....) | Create Account
Close category search window
 

Matched Filtering From Limited Frequency Samples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eftekhari, A. ; Dept. of Electr. Eng. & Comput. Sci., Colorado Sch. of Mines, Golden, CO, USA ; Romberg, J. ; Wakin, M.B.

In this paper, we study a simple correlation-based strategy for estimating the unknown delay and amplitude of a signal based on a small number of noisy, randomly chosen frequency-domain samples. We model the output of this “compressive matched filter” as a random process whose mean equals the scaled, shifted autocorrelation function of the template signal. Using tools from the theory of empirical processes, we prove that the expected maximum deviation of this process from its mean decreases sharply as the number of measurements increases, and we also derive a probabilistic tail bound on the maximum deviation. Putting all of this together, we bound the minimum number of measurements required to guarantee that the empirical maximum of this random process occurs sufficiently close to the true peak of its mean function. We conclude that for broad classes of signals, this compressive matched filter will successfully estimate the unknown delay (with high probability and within a prescribed tolerance) using a number of random frequency-domain samples that scales inversely with the signal-to-noise ratio and only logarithmically in the observation bandwidth and the possible range of delays.

Published in:

Information Theory, IEEE Transactions on  (Volume:59 ,  Issue: 6 )

Date of Publication:

June 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.