Cart (Loading....) | Create Account
Close category search window
 

Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xufeng Wang ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Khan, M.R. ; Gray, J.L. ; Alam, M.A.
more authors

With recent advances in device design, single-junction GaAs solar cells are approaching their theoretical efficiency limits. Accurate numerical simulation may offer insights that can help close the remaining gap between the practical and theoretical limits. Significant care must be taken, however, to ensure that the simulation is self-consistent and properly comprehends thermodynamic limits. In this paper, we use rigorous photon recycling simulation coupled with carrier transport simulation to identify the dominant loss mechanisms that limit the performance of thin-film GaAs solar cells.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 2 )

Date of Publication:

April 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.