By Topic

The filter cache: an energy efficient memory structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Kin ; Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA ; Munish Gupta ; W. H. Mangione-Smith

Most modern microprocessors employ one or two levels of on-chip caches in order to improve performance. These caches are typically implemented with static RAM cells and often occupy a large portion of the chip area. Not surprisingly, these caches often consume a significant amount of power. In many applications, such as portable devices, low power is more important than performance. We propose to trade performance for power consumption by filtering cache references through an unusually small L1 cache. An L2 cache, which is similar in size and structure to a typical L1 cache, is positioned behind the filter cache and serves to reduce the performance loss. Experimental results across a wide range of embedded applications show that the filter cache results in improved memory system energy efficiency. For example, a direct mapped 256-byte filter cache achieves a 58% power reduction while reducing performance by 21%, corresponding to a 51% reduction in the energy-delay product over conventional design

Published in:

Microarchitecture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International Symposium on

Date of Conference:

1-3 Dec 1997