By Topic

A minaturized broad-band MMIC frequency doubler

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hiraoka, T. ; ATR Optical & Radio Commun. Res. Lab., Kyoto, Japan ; Tokumitsu, T. ; Akaike, Masami

A miniaturized broadband balanced MMIC (monolithic microwave integrated circuit) frequency double, composed of a common-gate FET and a common-source FET directly connected to each drain electrode, has been proposed and demonstrated. The doubler is designed and fabricated as a miniaturized function module using a conventional two-gate FET configuration, active trapping, and active impedance matching. The doubler design has been performed through phase error estimation, gate width optimization, and gate-source voltage optimization. The phase error estimation in a nonlinear condition has eliminated phase error compensation circuits. The fabricated chip size is only 0.5 mm×0.5 mm, which is about 1/10 the area of previously reported doublers. A conversion loss of 8-10 dB, a fundamental frequency suppression better than 17 dB, and an input return loss better than 8 dB are obtained in the output frequency range from 6 to 16 GHz. The broadband doubler as a miniaturized MMIC function module can be applicable to small-size oscillator MMICs and multifunction MMICs

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:38 ,  Issue: 12 )