Cart (Loading....) | Create Account
Close category search window
 

Mining topical influencers based on the multi-relational network in micro-blogging sites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ding Zhaoyun ; Sch. of Comput., Nat. Univ. of Defense Technol., Changsha, China ; Jia Yan ; Zhou Bin ; Han Yi

In micro-blogging contexts such as Twitter, the number of content producers can easily reach tens of thousands, and many users can participate in discussion of any given topic. While many users can introduce diversity, as not all users are equally influential, it makes it challenging to identify the true influencers, who are generally rated as being interesting and authoritative on a given topic. In this study, the influence of users is measured by performing random walks of the multi-relational data in micro-blogging: ret-weet, reply, reintroduce, and read. Due to the uncertainty of the reintroduce and read operations, a new method is proposed to determine the transition probabilities of uncertain relational networks. Moreover, we propose a method for performing the combined random walks for the multi-relational influence network, considering both the transition probabilities for intra- and inter-networking. Experiments were conducted on a real Twitter dataset containing about 260 000 users and 2.7 million tweets, and the results show that our method is more effective than TwitterRank and other methods used to discover influencers.

Published in:

Communications, China  (Volume:10 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.