By Topic

A Bayesian Monte Carlo Markov Chain Method for Parameter Estimation of Fractional Differenced Gaussian Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Olivares ; Geophysics Laboratory, Université du Luxembourg, Luxembourg ; F. N. Teferle

We present a Bayesian Monte Carlo Markov Chain method to simultaneously estimate the spectral index and power amplitude of a fractional differenced Gaussian process at low frequency, in presence of white noise, and a linear trend and periodic signals. This method provides a sample of the likelihood function and thereby, using Monte Carlo integration, all parameters and their uncertainties are estimated simultaneously. We test this method with simulated and real Global Positioning System height time series and propose it as an alternative to optimization methods currently in use. Furthermore, without any mathematical proof, the results from the simulations suggest that this method is unaffected by the stationary regime and hence, can be used to check whether or not a time series is stationary.

Published in:

IEEE Transactions on Signal Processing  (Volume:61 ,  Issue: 9 )