By Topic

Wavelet Denoising Based on the MAP Estimation Using the BKF Prior With Application to Images and EEG Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Larbi Boubchir ; Department of Electrical Engineering, College of Engineering, Qatar University ; Boualem Boashash

This paper presents a novel nonparametric Bayesian estimator for signal and image denoising in the wavelet domain. This approach uses a prior model of the wavelet coefficients designed to capture the sparseness of the wavelet expansion. A new family of Bessel K Form (BKF) densities are designed to fit the observed histograms, so as to provide a probabilistic model for the marginal densities of the wavelet coefficients. This paper first shows how the BKF prior can characterize images belonging to Besov spaces. Then, a new hyper-parameters estimator based on EM algorithm is designed to estimate the parameters of the BKF density; and, it is compared with a cumulants-based estimator. Exploiting this prior model, another novel contribution is to design a Bayesian denoiser based on the Maximum A Posteriori (MAP) estimation under the 0–1 loss function, for which we formally establish the mathematical properties and derive a closed-form expression. Finally, a comparative study on a digitized database of natural images and biomedical signals shows the effectiveness of this new Bayesian denoiser compared to other classical and Bayesian denoising approaches. Results on biomedical data illustrate the method in the temporal as well as the time-frequency domain.

Published in:

IEEE Transactions on Signal Processing  (Volume:61 ,  Issue: 8 )