By Topic

18% Efficiency IBC Cell With Rear-Surface Processed on Quartz

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

18 Author(s)
Dross, F. ; Hanwha Solar America, Santa Clara, CA, USA ; O'Sullivan, B. ; Debucquoy, M. ; Bearda, T.
more authors

In order to relax the mechanical constraints of processing thin crystalline Si wafers into highly efficient solar cells, we propose a process sequence, where a significant part of the process is done on module level. The device structure is an interdigitated-back-contact cell with an amorphous silicon back surface field. The record cell reaches an independently confirmed efficiency of 18.4%. Although the device deserves further optimization, the result shows the compatibility of processing on glass with efficiencies exceeding 18%, which opens the door to a high-efficiency solar cell process where the potentially thin wafer is attached to a foreign carrier during the full processing sequence.

Published in:

Photovoltaics, IEEE Journal of  (Volume:3 ,  Issue: 2 )